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Abstract

In gas chromatography, a chemical sample separates into its constituent components
as it travels along a long thin column. As the component chemicals exit the column
they are detected and identified, allowing the chemical makeup of the sample to be
determined. For correct identification of the component chemicals, the distribution of
the concentration of each chemical along the length of the column must be nearly sym-
metric. The prediction and control of asymmetries in gas chromatography has been
an active research area since the advent of the technique. In this paper, we develop
from first principles a general model for isothermal linear chromatography. We use this
model to develop closed-form expressions for terms related to the first, second, and
third moments of the distribution of the concentration, which determines the velocity,
diffusion rate, and asymmetry of the distribution. We show that for all practical ex-
perimental situations, only fronting peaks are predicted by this model, suggesting that
a nonlinear chromatography model is required to predict tailing peaks. For situations
where asymmetries arise, we analyze the rate at which the concentration distribution
returns to a normal distribution. Numerical examples are also provided.
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chemicals become spatially separated from each other, and exit the column
at different times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Cross section of gas chromatography column. Ω(1) represents the region
containing the mobile phase and Ω(2) the region containing the stationary
phase. In this figure, the liquid stationary phase has accumulated in the
corners, resulting in an undesirably thick coating. . . . . . . . . . . . . . . . . . . . . . . 9

3 Scaled averaged value of analyte concentration plotted along long axis of
column at time τ = 6.78 × 105, approximately halfway along the length of
the column. In this example, the curve is symmetric. . . . . . . . . . . . . . . . . . . . . 26

5



Tables

1 Predictions of the one-domain and two-domain models, along with results
from a numerical polynomial curve fit. There is excellent agreement between
the asymptotic prediction and numerical result. . . . . . . . . . . . . . . . . . . . . . . . . 27

6



A Reduced Order Model for the

Study of Asymmetries in Linear Gas

Chromatography for Homogeneous

Tubular Columns

1 Introduction

Chromatography [6, 7] is a family of analytical chemistry techniques for the separation
of mixtures. Common to all chromatographic techniques is the passing of a sample (the
analyte) in the mobile phase past a static retentative medium called the stationary phase.
The stationary phase provides resistance to transport via chemical interactions with the
components of the sample. Each component in the sample has a characteristic separation
rate that can be used to identify it, and thus the composition of the original mixture.

Marcel Golay’s paper [5] is one of the most celebrated papers in the field of gas chro-
matography. While attempting to analyze packed-column chromatography, Golay conceived
of using capillary columns rather than packed columns, increasing the separating power by
orders of magnitude. In capillary chromatography, the stationary phase is a liquid coating
the column walls, and is chosen specifically to interact with the analyte. The mobile phase
is an inert carrier gas, frequently hydrogen or helium, that transports the analyte along the
column. Different chemicals pass at different rates, allowing separation. An analyte diffuses
as it moves down the column, such that the concentration along the long axis eventually
assumes the shape of a gaussian. In this paper we revisit the work of Golay, starting from
first principles, and provide formal justification for his results, as well as extending them.

For various reasons, the concentration may not assume a symmetric form, making ac-
curate identification of compounds difficult to impossible. For example, high gas flow rates
and shorter column lengths will provide a desirable decrease in the analysis time, but can
also lead to asymmetric forms. In particular, columns with an inhomogeneous stationary
phase are known to produce asymmetric forms [9]. For the case of isothermal linear chro-
matography in homogeneous columns, we develop a mathematical and computational model
describing the movement of an analyte along the column, and determine the concentration
shape. We outline the combinations of problem parameters leading to asymmetries, and
determine the rate at which an asymmetric concentration distribution returns to normality.

In his fundamental paper, Golay develops a mathematical model for capillary chro-
matography by extending the work of Taylor [10, 11] and Aris [2] to the case of reacting
side walls. Taylor, and later Aris, analyzed the dispersion of a solute flowing through nar-
row channels. Golay analyzes the diffusion of a sample gas of uniform composition within a
round column uniformly coated with a retentive layer. The cross-section of such a column
is shown in Figure 1. Golay makes the assumption that diffusion in the stationary phase is
instantaneous. Analogously, this implies that the stationary phase is of negligible thickness
compared to the column diameter. Using a cylindrical coordinate system with u0 (r) as the
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Ω(1) Ω(2)

R

R(1+δ)

Figure 1. Cross section of a gas chromatography column. Ω(1)

represents the mobile phase, where the analyte is conveyed along
the column by a carrier gas. Ω(2) represents the stationary phase,
generally a viscous liquid that interacts with the analyte. Each
chemical progresses at a different rate along the column based on
how strongly it interacts with the stationary phase. As a result,
the chemicals become spatially separated from each other, and exit
the column at different times.

expression for Poiseuille flow in a column, Golay considers the equations

∂C(1)

∂t
+ u0 (r)

∂C(1)

∂z
= D(1)

(
∂2C(1)

∂r2
+

1

r

∂C(1)

∂r
+

∂2C(1)

∂z2

)
in Ω, (1.1)

D(1)

R

∂C(1)

∂r
= −k

2

∂C(1)

∂t
at r = R, (1.2)

where C(1) is the concentration in the mobile phase, D(1) is the diffusivity in the mobile
phase, R is the capillary radius, and k is the retention factor, defined as the ratio of the
analyte in the stationary phase to the analyte in the mobile phase, when there is equilibrium
between the two phases. We refer to (1.1) and (1.2) as the one-domain model, because only
the mobile phase is explicitly modeled, and the stationary phase is reduced to a reactive
boundary condition. The first equation in the one-domain model governs the diffusion of
the analyte in the column. The second is a reacting-wall boundary condition describing the
interaction of the analyte with the stationary phase. The authors know of no derivation
for the boundary condition (1.2). Furthermore, it is unclear how this boundary condition
should be modified to account for a thicker stationary phase, or to a situation where the
thickness of the stationary phase is not much smaller than its radius of curvature, such as
the example cross-section in Figure 2. We will address such a case in a future work.

When performing a numerical simulation of chromatography, a boundary condition sim-
ilar to (1.2) is generally used. However, such simulations are not accurate unless this bound-
ary condition is correct. We set forth the full equations governing gas chromatography in
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Ω(1)

Ω(2)

Figure 2. Cross section of gas chromatography column. Ω(1)

represents the region containing the mobile phase and Ω(2) the
region containing the stationary phase. In this figure, the liquid
stationary phase has accumulated in the corners, resulting in an
undesirably thick coating.

section 2, where we model both the mobile and stationary phases explicitly. No assumptions
are made regarding the thickness of the stationary phase or the rate of diffusion in that
phase. In section 3.2 we derive the boundary condition (1.2) by performing an asymptotic
expansion under the assumption that the stationary phase is thin. For a thicker stationary
phase, Golay’s boundary condition (1.2) may not give solutions with the desired accuracy.

A direct numerical simulation of a chromatograph is an expensive endeavor, due to
the very high aspect ratio of the capillary column. The ratio of the column length to the
column diameter can be on the order of 105 or more. A brute force numerical simulation
requires we explicitly model the entire length of the column, even though very little activity
occurs far from the concentration peak. A straightforward computational implementation
necessarily leads to poor resource utilization. We instead take a more efficient approach
by first performing a Fourier transform along the long axis of the column, effectively re-
moving the undesirable aspect ratio. In section 3, we show that the equations describing
gas chromatography in both mobile and stationary phases can be solved by performing a

Fourier transform along the long axis and expanding the solution in eigenfunctions Ĉ
(1)
m and

Ĉ
(2)
m with eigenvalue λm(α), where m indicates the mode and α the wavenumber. We show

that the motion in the column is controlled by the m = 0 modes Ĉ
(1)
0 and Ĉ

(2)
0 , and the

eigenvalue λ0(α), for small α. In section 4, we let σ be the dimensionless rescaling of λ0, ε
be the dimensionless rescaling of α, and consider the expansion

σ(ε) = σ0 + iσ1ε + σ2ε
2 + iσ3ε

3 + . . . (1.3)

of σ(ε). We show that σ1 controls the velocity of the analyte in the column, σ2 controls the
diffusion, and that σ3 controls asymmetry. In sections 4.1 and 4.2 we perform a perturba-
tion expansion of σ1, σ2, and σ3 to construct analytic expressions for these terms, which
illustrate the combinations of problem parameters D(1), D(2), k, etc., that will generate
asymmetric concentration distributions. This analysis provides a rigorous mathematical
explanation of phenomena empirically well understood by gas chromatographers. Further,
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we show in section 5 that as the time t becomes large, the effect of σ3 is diminished, and the
concentration resumes a normal distribution. We also address the time necessary for other
sources of asymmetry, such as the initial concentration, to dissipate. The optimum carrier
gas flow rate and minimum theoretical plate height are computed in section 6. We verify
our asymptotic results through numerical experiment in section 7 and offer conclusions in
section 8.

2 Fundamental Equations for Linear Gas Chromatography

We begin by writing down the full equations for linear gas chromatography for a general
coordinate system and arbitrary column cross-section. Let Ω(1) denote the mobile phase,
and Ω(2) the stationary phase. We refer to equations (2.1)-(2.5) as the the two-domain

model. The operative equations are

∂C(1)

∂t
+ u0(x, y)

∂C(1)

∂z
= D(1)∇2C(1) in Ω(1), (2.1)

∂C(2)

∂t
= D(2)∇2C(2) in Ω(2), (2.2)

C(2) = KC(1) on ∂Ω(1), (2.3)

κ(1) ∂C(1)

∂n
= κ(2) ∂C(2)

∂n
on ∂Ω(1), (2.4)

∂C(2)

∂n
= 0 on ∂Ω(2), (2.5)

where u0(x, y) is chosen to satisfy the Navier-Stokes equations in Ω(1), and C(i)(x, y, z, t) is
a concentration in Ω(i), i = 1, 2. We have the diffusivities D(i) = κ(i)/ρ(i), i = 1, 2, where
ρ(1) and κ(1) are the density and conductivity of the mobile phase, and ρ(2) and κ(2) are the
density and conductivity of the stationary phase. The partition coefficient K is defined as
the ratio of the analyte concentration in the stationary phase to the analyte concentration
in the mobile phase. We denote this relationship as C(2) = KC(1), and take K to be
constant. This assumption defines linear chromatography. Although we do not consider
the nonlinear case here, a model of nonlinear chromatography is described in [1]. The linear
partition coefficient is discussed in greater detail in Appendix 8. Equation (2.1) describes the
advection and diffusion of the concentration in the mobile phase. Equation (2.2) describes
unidirectional diffusion in the stationary phase. Equation (2.3) is a consequence of chemical
equilibrium between the phases, and (2.4) enforces flux equilibrium. Equation (2.5) indicates
that the capillary wall is a zero-flux boundary. For the remainder of this paper, we specialize
equations (2.1)-(2.5) to the case of a long narrow column of radius R(1 + δ) with coated
walls in a cylindrical coordinate system with radial symmetry, and assume the cross section
of the column does not vary with z. The cross-section is shown in Figure 1. The mobile
phase Ω(1) has radius R, and the stationary phase Ω(2) has a thickness Rδ > 0. We choose
u0 to be the velocity profile for Poiseuille flow in a column,

u0(r) =

{
2U0

(
1 − r2

R2

)
0 ≤ r ≤ R

0 r > R

}
,

where U0 is the average value of the velocity.
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3 Reduced Order Models

In section 3.1, we show that we can solve the two-domain model equations (2.1)-(2.5) by
performing a Fourier transform of the concentration in z, then expanding the solution in
eigenfunctions. This greatly simplifies the problem and reduces the required computational
effort for solution. This procedure can also be applied to the one-domain model equations
(1.1)-(1.2). However, in section (3.2), we instead derive Golay’s boundary condition (1.2)
from the two-domain model. In the process, we show the assumptions under which the
one-domain model is valid. In preparation for the investigation of asymmetries in section 4,
we first make the one-domain and two-domain eigenvalue problems dimensionless in section
3.3. Finally, in section 3.4, we show how to account for the initial distribution of the
concentration within the rescaled models.

3.1 The Eigenvalue Problem for the Two-Domain Model

Let Ĉ(i)(r, α, t) be the Fourier transform of the concentration C(i) (r, z, t) with respect to z:

Ĉ(i)(r, α, t) =

∫ ∞

−∞

e−iαzC(i)(r, z, t)dz i = 1, 2.

Then, Ĉ(1), Ĉ(2) satisfy

∂Ĉ(1)

∂t
+ iαu0(r)Ĉ

(1) = D(1)
(
∇2

rĈ
(1) − α2Ĉ(1)

)
in Ω(1),

∂Ĉ(2)

∂t
= D(2)

(
∇2

rĈ
(2) − α2Ĉ(2)

)
in Ω(2),

with the boundary conditions

Ĉ(2) = KĈ(1) at r = R,

κ(1) ∂Ĉ(1)

∂r
= κ(2) ∂Ĉ(2)

∂r
at r = R,

∂Ĉ(2)

∂r
= 0 at r = R(1 + δ),

where ∇2
r = ∂2

∂r2 + 1
r

∂
∂r is a Laplacian in the radial direction only.

We can solve the Fourier-transformed equations by expanding the solution in eigenfunc-
tions:

Ĉ(1)(r, α, t) =
∞∑

m=0

amĈ(1)
m (r, α)eλm(α)t,

Ĉ(2)(r, α, t) =
∞∑

m=0

amĈ(2)
m (r, α)eλm(α)t.
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The eigenfunctions Ĉ
(1)
m (r, α), Ĉ

(2)
m (r, α), and associated eigenvalues λm(α) must then

satisfy the eigenvalue problem

λmĈ(1)
m + iαu0(r)Ĉ

(1)
m = D(1)

(
∇2

rĈ
(1)
m − α2Ĉ(1)

m

)
in Ω(1), (3.1)

λmĈ(2)
m = D(2)

(
∇2

rĈ
(2)
m − α2Ĉ(2)

m

)
in Ω(2), (3.2)

with the boundary conditions

Ĉ(2)
m = KĈ(1)

m at r = R, (3.3)

κ(1) ∂Ĉ
(1)
m

∂r
= κ(2) ∂Ĉ

(2)
m

∂r
at r = R, (3.4)

∂Ĉ
(2)
m

∂r
= 0 at r = R(1 + δ), (3.5)

for all m.

Computing the solution for all m, α would be very complicated. For the case α = 0, we
see that our eigenvalue problem is greatly simplified. In particular, if δ = 0, we can see that
the resulting problem has eigenvalues

λm(0) =

{
0 m = 0

D(1)

R2 νm m > 0
(3.6)

where νm ≤ 0 is an eigenvalue of ∇2
r with zero Neumann boundary conditions over the

unit disk. To determine the concentration at time t we must compute the inverse Fourier
transform, which involves the term eλm(α)t = e(D(1)/R2)νmt. When D(1)t/R2 ≫ 1, which
holds for t sufficiently large, all of the modes m > 0 damp out rapidly in comparison with
the m = 0 mode. If α 6= 0, these modes damp out even faster. This also hold true if
δ > 0. Thus, under these assumptions, we need only consider the mode m = 0, and solve

only for the eigenfunctions Ĉ
(1)
0 (r, α), Ĉ

(2)
0 (r, α), and the eigenvalue λ0(α). Further, we

are interested in these terms only for small α. For m = 0, equations (3.1)-(3.5) define the
simplified two-domain eigenvalue problem.

3.2 Derivation of the One-Domain Model

The equations describing the mobile phase Ω(1) are identical in both the one-domain and
two-domain models. In the stationary phase Ω(2), an idealized liquid phase coating is
extremely thin with respect to the column diameter. Under this assumption, we can greatly
simplify the solution of equations (3.1)-(3.5) for the case m = 0 by deriving a single “reacting
side wall” boundary condition for the mobile phase Ω(1).

Let us assume that that δ ≪ 1. Under this assumption, (3.2) over the domain Ω(2) can
be replaced with

D(2) ∂
2Ĉ

(2)
0

∂r2
=
(
λ0 + D(2)α2

)
Ĉ

(2)
0 in Ω(2), (3.7)
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where we have ignored the first derivative term, given that |∂2Ĉ
(2)
0 /∂r2| ≫ |∂Ĉ

(2)
0 /∂r| when

δ ≪ 1. The first derivative term could have been kept and approximated as (1/R)(∂Ĉ
(2)
0 /∂r),

although this added complication gives nearly the same result.

Equation (3.7) can be solved explicitly, which means we can create a modified boundary

condition for Ĉ
(1)
0 at r = R, and then need only solve over the domain Ω(1). The solution

to (3.7) in the domain Ω(2) is

Ĉ
(2)
0 (r) =

(
KĈ

(1)
0 (R)

) cosh
[
(R (1 + δ) − r)

√
λ0

D(2) + α2
]

cosh
[
Rδ
√

λ0

D(2) + α2
] in Ω(2),

where the boundary conditions (3.3) and (3.5) are satisfied. Taking the derivative and
substituting into (3.4) for m = 0, the reacting side wall boundary condition takes the form

D(1) ∂Ĉ
(1)
0

∂r
= −D(1) κ

(2)

κ(1)

(
KĈ

(1)
0 (R)

)√ λ0

D(2)
+ α2

sinh
[
Rδ
√

λ0

D(2) + α2
]

cosh
[
Rδ
√

λ0

D(2) + α2
] at r = R.

We can further simplify the boundary condition by Taylor expanding in δ, and keeping only
O(δ) terms. Our boundary boundary condition takes the form

D(1)

R

∂Ĉ
(1)
0

∂r
= −k

2
Ĉ

(1)
0 (R)

(
λ0 + D(2)α2

)
at r = R, (3.8)

where we have used the retention factor

k = 2Kδ
κ(2)

κ(1)

D(1)

D(2)
. (3.9)

The inverse Fourier transform of (3.8) gives

D(1)

R

∂Ĉ(1)

∂r
= −k

2

(
∂Ĉ(1)

∂t
+ D(2) ∂

2Ĉ(1)

∂z2

)
at r = R, (3.10)

which is the complete boundary condition to O(δ).

Note that the boundary condition (3.10) agrees with Golay’s boundary condition (1.2),
except for the ∂2Ĉ(1)/∂z2 term. If the α2 term in (3.8) is neglected, the inverse Fourier
transform gives exactly Golay’s boundary condition (1.2). Consider (3.8), and recall that
λ0 ∼ D(1)/R2, from (3.6). We see that the term α2 can be neglected if D(1)/D(2) ≫
(αR)2. As we are interested only in small values of α, R ≪ 1, and D(1)/D(2) ≈ 104, for
typical problem parameters, the α2 term in (3.8) can safely be neglected, and the boundary
condition (1.2) is accurate under these conditions. Our simplified model is

λ0Ĉ
(1)
0 + iαu0(r)Ĉ

(1)
0 = D(1)

(
∇2

rĈ
(1)
0 − α2Ĉ

(1)
0

)
in Ω(1), (3.11)

D(1)

R

∂Ĉ
(1)
0

∂r
= −k

2
Ĉ

(1)
0 (R)λ0 at r = R, (3.12)

These equations define the one-domain eigenvalue problem, and are in agreement with the
equations (1.1)-(1.2).
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3.3 Rescaling

We introduce the dimensionless variables

σ = R2

D(1) λ0 ε = αR Pe = U0R
D(1) ζ = z

R

ξ = r
R φ(1) =

bC(1)
0
R φ(2) =

bC(2)
0
R τ = D(1)

R2 t

which give the rescaled two-domain eigenvalue problem

σφ(1) + 2iεPef(ξ)φ(1) =
∂2φ(1)

∂ξ2
+

1

ξ

∂φ(1)

∂ξ
− ε2φ(1) in Ω̃(1), (3.13)

D(1)

D(2)
σφ(2) =

∂2φ(2)

∂ξ2
+

1

ξ

∂φ(2)

∂ξ
in Ω̃(2), (3.14)

φ(2) = Kφ(1) at ξ = 1, (3.15)

∂φ(1)

∂ξ
=

κ(2)

κ(1)

∂φ(2)

∂ξ
at ξ = 1, (3.16)

∂φ(2)

∂ξ
= 0 at ξ = 1 + δ, (3.17)

where Pe is the Péclet number, f(ξ) = 1−ξ2, Ω̃(1) is the unit disk (the domain Ω(1) rescaled
by a factor R), and Ω̃(2) is an annulus of thickness δ (the domain Ω(2) rescaled by a factor
R). Note that the term ε2φ(2) has been dropped from (3.14) for the same reason that the
term involving α2 was dropped from (3.12).

We realize this is not an ideal scaling for the Péclet number. Other scalings are U0L/D(1)

where L is the column length, or U0W/D(1), where W is the full width of the concentration
distribution at half height. We choose to use the rescaling given above because it produces
rescaled equations of the simplest form.

The rescaled simplified one-domain equations (3.11)-(3.12) take the form

σφ(1) + 2iεPef(ξ)φ(1) =
∂2φ(1)

∂ξ2
+

1

ξ

∂φ(1)

∂ξ
− ε2φ(1) in Ω̃(1), (3.18)

∂φ

∂ξ
= −k

2
φ(1)(1)σ at ξ = 1. (3.19)

3.4 Initial Concentration Distribution

Our models must also account for the shape of the analyte distribution after it enters the
column, especially as the initial concentration distribution is in general highly nonsymmet-
ric.
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Let F (r, α) represent the unscaled Fourier transform of the initial concentration at time
t = 0. We may express this function as a linear combination of the eigenmodes in domain
Ω(1):

F (r, α) =

∞∑

m=0

am(α)C(1)
m (r, α).

We assume that the initial concentration in the stationary phase Ω(2) is zero. As we have

seen, only the m = 0 eigenmode C
(1)
0 = φ(1) survives for large τ . We are therefore concerned

only with the coefficient a0(ε). As our operator in (3.13) is symmetric but not Hermitian, we
can isolate a0(α) by taking the inner product with the corresponding m = 0 eigenfunction
of the adjoint operator. It can be shown that this eigenfunction of the adjoint operator is
just the complex conjugate of φ(1)(ξ, ε), which gives

a0(ε) =

∫ 1
0 ξφ(1)(ξ, ε)F (ξ, ε)dξ

∫ 1
0 ξφ(1)(ξ, ε)φ(1)(ξ, ε)dξ

where F (ξ, ε) denotes the dimensionless rescaling of F (r, α), and a0(ε) the dimensionless
rescaling of a0(α).

4 Small Wavenumber Expansions: Computing σ(ε)

We must apply an inverse Fourier transform to determine our final concentration. We
assume that the Fourier-transformed function can be can be replaced with its m = 0
eigenmode in the case where D(1)t/R2 ≫ 1, as discussed earlier. For this situation, we
seek

Φ(ξ, ζ, τ) =
1

2π

∫ ∞

−∞

eiεζa0(ε)φ
(1)(ξ, ε)eσ(ε)τdε, (4.1)

The real part of σ(ε) is everywhere nonpositive and has a maximum at ε = 0, meaning
that the main contribution of the integral will come for small ε. As such, we consider the
expansion of the eigenvalue σ(ε) in the rescaled wavenumbers ε:

σ(ε) = σ0 + σ1ε + σ2ε
2 + σ3ε

3 + . . .

From (3.6), we see that σ(0) = 0, which means that σ0 = 0.

To discern the physical meaning of σ1 and σ2, assume a differential equation of the form
∂φ/∂τ + f ∂φ/∂ζ = D∂2φ/∂ζ2, take its Fourier transform in ζ, and plug in a solution of
assumed form exp(στ + iεζ). The resulting expression for the eigenvalue is

σ(ε) = (−if)ε + (−D)ε2.

We see that σ1 = −if describes the effective velocity of the analyte along the column, and
σ2 = −D describes the effective diffusion coefficient. Further, we observe that if σ3 and
higher terms are zero, then the concentration will approximate a Gaussian with mean fτ
and variance

√
2Dτ . Thus, for a symmetric initial analyte distribution, there could never
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be any asymmetry. his implies σ3 and higher terms control the asymmetry of the analyte
distribution. Of these higher order terms, σ3 is the leading and dominant term.

We will also compare the computed expressions for σ1 and σ2 with the first and second
moments determined by Golay [5]. To translate between moments of the distribution and
σ1 and σ2, observe that σ1 ≡ −i(first moment), and that σ2 ≡ −1/2(second moment).
Golay did not compute third or higher moments. The third term in the expansion, σ3, is
related to the third moment, which is in turn related to the skewness of the distribution.
In chromatography, a zero skewness of the concentration distribution would indicate a
symmetric distribution, a positive skewness would indicate a “fronting” tail, and a negative
skewness a “lagging tail”.

In section 4.1, we apply the standard perturbation theory of eigenvalues to the simplified
rescaled two-domain equations (3.13)-(3.17) to construct closed-form expressions for σ1, σ2,
and σ3. In section 4.2, we perform the same analysis for the corresponding one-domain
equations (3.18)-(3.19). We compare with Golay’s first and second moments in [5] by
performing a series expansion of σi, i = 1, 2, 3 in δ while holding D(1)δ/D(2) fixed. We
will see that the one-domain equations exactly recover Golay’s first and second moments.
For the two-domain equations, the first term in the series expansion of σ1 exactly matches
Golay’s first moment, and the first term in the series expansion of σ2 exactly matches
Golay’s second moment. The subsequent terms in the series expansions provide higher
order corrections in δ.

These results are confirmed via numerical experiment in section 7.

4.1 Eigenvalue Perturbation for Two-Domain Model

We are interested in solving the rescaled simplified two-domain equations (3.13)-(3.17) via
a perturbation method. We define

σ(ε) = σ1ε + σ2ε
2 + σ3ε

3 + . . . (4.2)

φ(1)(ξ, ε) = φ
(1)
0 (ξ) + φ

(1)
1 (ξ)ε + φ

(1)
2 (ξ)ε2 + φ

(1)
3 (ξ)ε3 + . . . (4.3)

φ(2)(ξ, ε) = φ
(2)
0 (ξ) + φ

(2)
1 (ξ)ε + φ

(2)
2 (ξ)ε2 + φ

(2)
3 (ξ)ε3 + . . . (4.4)

We plug these expansions into (3.13) and (3.14) and collect powers of ε. The O(1) terms
give the problem

∂2φ
(1)
0

∂ξ2
+

1

ξ

∂φ
(1)
0

∂ξ
= 0 on Ω̃(1) (4.5)

∂2φ
(2)
0

∂ξ2
+

1

ξ

∂φ
(2)
0

∂ξ
= 0 on Ω̃(2), (4.6)
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with boundary conditions

φ
(2)
0 = Kφ

(1)
0 at ξ = 1, (4.7)

∂φ
(1)
0

∂ξ
=

κ(2)

κ(1)

∂φ
(2)
0

∂ξ
at ξ = 1, (4.8)

∂φ
(2)
0

∂ξ
= 0 at ξ = 1 + δ. (4.9)

We determine that φ
(1)
0 (ξ) = 1 by solving (4.5) and requiring that φ

(1)
0 be finite at ξ = 0.

Similarly, we find φ
(2)
0 (ξ) = K.

Continuing, we find that the O(ε) terms give

∂2φ
(1)
1

∂ξ2
+

1

ξ

∂φ
(1)
1

∂ξ
= σ1 + 2iPef(ξ) on Ω̃(1) (4.10)

∂2φ
(2)
1

∂ξ2
+

1

ξ

∂φ
(2)
1

∂ξ
=

D(1)

D(2)
Kσ1 on Ω̃(2), (4.11)

with boundary conditions

φ
(2)
1 = Kφ

(1)
1 at ξ = 1, (4.12)

∂φ
(1)
1

∂ξ
=

κ(2)

κ(1)

∂φ
(2)
1

∂ξ
at ξ = 1, (4.13)

∂φ
(2)
1

∂ξ
= 0 at ξ = 1 + δ. (4.14)

Equations (4.10)-(4.11) have the form

1

ξ

∂

∂ξ

(
ξ
∂φ(1)

∂ξ

)
= g(1) on Ω̃(1), (4.15)

1

ξ

∂

∂ξ

(
ξ
∂φ(2)

∂ξ

)
= g(2) on Ω̃(2). (4.16)

along with the boundary conditions (4.12)-(4.14). If we multiply (4.15) by ξ and (4.16) by
κ(2)ξ/κ(1) and integrate, we arrive at

∫ 1

0

∂

∂ξ

(
ξ
∂φ(1)

∂ξ

)
dξ +

κ(2)

κ(1)

∫ 1+δ

1

∂

∂ξ

(
ξ
∂φ(2)

∂ξ

)
dξ =

∫ 1

0
ξg(1)dξ +

κ(2)

κ(1)

∫ 1+δ

1
ξg(2)dξ.

(4.17)

We find, after evaluating boundary conditions, that the left hand side of the proceeding
equation is zero. This relationship is necessary for the solvability of (4.10)-(4.11) with their
boundary conditions, but it can also be shown that this relationship is sufficient. The right
hand side of this equation must also be zero, which then defines the solvability condition

∫ 1

0
ξg(1)dξ +

κ(2)

κ(1)

∫ 1+δ

1
ξg(2)dξ = 0, (4.18)
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that must hold if we are to determine solutions to the differential equations with their
specific boundary conditions.

We apply the solvability condition for the O(ε) equations (4.10)-(4.11). Solving the
resulting equation for σ1 gives

σ1 =
−2iPe

∫ 1
0 f(ξ)ξdξ

∫ 1
0 ξdξ + k

2

∫ 1+δ
1 ξdξ

,

where all the terms on the right-hand side are known. The proceeding equation has been
simplified in terms of the retention factor k, defined in (3.9).

Solving for σ1 allows us to solve for φ
(1)
1 and φ

(2)
1 . Knowledge of these terms allows us

to again exploit the solvability condition to determine σ2. We can determine an expression
for σ2 similar in form to the proceeding equation, where all the terms on the right hand

side are known and easily evaluated. Once σ2 is known, we solve for φ
(1)
2 and φ

(2)
2 , and

then again exploit the solvability condition to determine σ3, and so on. This process can
be continued indefinitely, although we will stop at σ3.

After exploiting the solvability condition to determine σn, we must then determine φ
(1)
n

and φ
(2)
n by solving equations of the form

∂2φ
(1)
n

∂ξ2
+

1

ξ

∂φ
(1)
n

∂ξ
= σn + h(1)

(
σn−1, . . . , σ1, φ

(1)
n−1, . . . , φ

(1)
0

)
on Ω̃(1) (4.19)

∂2φ
(2)
n

∂ξ2
+

1

ξ

∂φ
(2)
n

∂ξ
=

D(1)

D(2)
Kσn + h(2)

(
σn−1, . . . , σ1, φ

(1)
n−1, . . . , φ

(1)
0

)
on Ω̃(2), (4.20)

with corresponding boundary conditions

φ(2)
n = Kφ(1)

n at ξ = 1, (4.21)

∂φ
(1)
n

∂ξ
=

κ(2)

κ(1)

∂φ
(2)
n

∂ξ
at ξ = 1, (4.22)

∂φ
(2)
n

∂ξ
= 0 at ξ = 1 + δ. (4.23)

The functions h(1) and h(2) involve only polynomial combinations of ξi and ξi log ξ, making
the differential equations easily solvable at each step. As this process is very systematic, we
use Mathematica to automate our computations, and determine {σi}3

i=1.

Physically realistic values for the ratio of diffusion constants and relative thickness of
the stationary phase are D(1)/D(2) ≈ 104 and δ ≈ 0.002 [12]. Although δ ≪ 1, (D(1)/D(2))δ
is not small. As such, we hold (D(1)/D(2))δ constant and perform a series expansion of σ1,
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σ2, and σ3 in δ. Upon simplification, we arrive at the following expansions for {σi}3
i=1:

σ1 = −
(

iPe

1 + k

)
+

(
iPe

2

k

(1 + k)2

)
δ + . . . , (4.24)

σ2 =
−1

1 + k

(
1 +

11k2 + 6k + 1

48 (1 + k)2
Pe2

)
− k

2(1 + k)2

(
−1 +

−11k2 + 10k + 3

48 (1 + k)2
Pe2

)
δ (4.25)

−
(

kPe2

16(1 + k)3

)
D(1)

D(2)
δ2 + . . . ,

σ3 =
iPe

12(1 + k)3

(
k(1 + 4k) +

177k4 + 122k3 + 44k2 + 10k + 1

240 (1 + k)2
Pe2

)
(4.26)

+
ikPe

24(1 + k)4

(
(1 + 6k − 4k2) +

−177k4 + 464k3 + 234k2 + 48k + 5

240(1 + k)2
Pe2

)
δ

+
ikPe

3(1 + k)3

(
2 − 1 + 2k − 11k2

24(1 + k)2
Pe2

)
D(1)

D(2)
δ2 + . . . .

Note that σ1 and σ3 are purely imaginary, while σ2 is purely real. These expansions can
be continued, and only the first two terms of each expansion are given here. Since Pe, k,
D(1), D(2) are always positive, and 0 < δ < 1, we see that the signs of σ1 and σ2 are always
negative, which ensures that the concentration peak always moves with the flow of the
carrier gas, and that diffusion always leads to broader bands on the column. Additionally,
note that σ3 goes to zero as k approaches ∞.

Further, observe that the sign of σ3 is constrained to be nonnegative. The sign of σ3,
which is the same as the sign of the third moment of the distribution of the concentration,
indicates whether the asymmetry is “fronting” or “tailing”. In statistics, the sign of the
third moment of a distribution determines whether the asymmetry is “left-skewed” or “right-
skewed”, in the same manner. For chromatography, we see by analogy that if σ3 is negative,
a “tailing” peak is predicted, and if σ3 is positive, a “fronting” peak is predicted. This means
that the the equations for linear chromatography in a homogeneous column can never lead
to “tailing” peaks. This theory predicts that only “fronting” peaks are possible, and strongly
suggests that a nonlinear chromatography model is necessary to explain tailing peaks.

In comparing with the predictions of Golay, we note that his first moment agrees with
the first term in (4.24), and that his second moment (equation (30) in [5]) agrees with the
first term in (4.25).

In the next section, we will compare with the corresponding expansions for the one-
domain model, and see that the one-domain equations recover only the first term in the
above series expansions. Note that (4.24)-(4.26) are valid up to O(δ), whereas the results
in the next section are valid only to O(1).
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4.2 Eigenvalue Perturbation for One-Domain Model

We are interested in solving the one-domain chromatography equations (3.18)-(3.19) via a
perturbation method. We define

σ(ε) = σ0 + σ1ε + σ2ε
2 + σ3ε

3 + . . . (4.27)

φ(ξ, ε) = φ0(ξ) + φ1(ξ)ε + φ2(ξ)ε
2 + φ3(ξ)ε

3 + . . . (4.28)

where we have set φ ≡ φ(1), as we only consider the single domain Ω̃(1) here. Note that the
eigenvalue σ(ε) in this section is distinct from the eigenvalue in the last section, because we
are considering the one-domain equations here.

Plugging the proceeding expansions into (3.18) and collecting powers of ε gives φ0 = 1,
to O(1), where we again have σ0 = 0. Continuing, we find that the O(ε) expansion gives

∂2φ1

∂ξ2
+

1

ξ

∂φ1

∂ξ
= σ1 + 2iPef(ξ) on Ω̃(1) (4.29)

∂φ1

∂ξ
= −k

2
σ1 at ξ = 1. (4.30)

The proceeding equations have the form

1

ξ

∂

∂ξ

(
ξ
∂φ

∂ξ

)
= g(1) on Ω̃(1), (4.31)

∂φ

∂ξ
= g(2) at ξ = 1. (4.32)

If we multiply (4.31) by ξ and integrate, we arrive at

∫ 1

0

∂

∂ξ

(
ξ
∂φ

∂ξ

)
dξ =

∫ 1

0
g(1)ξdξ (4.33)

We find, after evaluating boundary conditions, that the left hand side of the proceeding
equation is g(2). This relationship is necessary for the solvability of (4.29) with its boundary
conditions, but one can also show that this argument is sufficient. Setting the right-hand
side equal to g(2) serves to define the solvability condition

∫ 1

0
g(1)ξdξ = g(2), (4.34)

which must hold if we are to determine solutions to the differential equations, given their
specific boundary conditions.

We may proceed in the same systematic fashion as in the previous section, using the
compatibility condition to determine the next term in the series expansion of σ, and then
solving the differential equation of that order to determine the next term in the series
expansion of φ. We apply the solvability condition for the O(ε) equations. Solving the
resulting equation for σ1 gives

σ1 =
−iPe

∫ 1
0 f(ξ)ξdξ

∫ 1
0 ξdξ + k

2

, (4.35)
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an expression we can easily compute because all terms on the right-hand side are known
and easily evaluated.

Solving for σ1 allows us to solve for φ1. Knowledge of this function allows us to again
exploit the solvability condition to determine σ2. We can determine an expression for σ2

similar in form to the proceeding equation, where all the terms on the right hand side are
known and easily evaluated. Once σ2 is known, we solve for φ2, and then again exploit the
solvability condition to determine σ3, and so on. This process can be continued indefinitely,
although we will stop at σ3.

After exploiting the solvability condition to determine σn, we must then determine φn

by solving equations of the form

∂2φn

∂ξ2
+

1

ξ

∂φn

∂ξ
= σn + h(1) (σn−1, . . . , σ1, φn−1, . . . , φ0) on Ω̃(1) (4.36)

with corresponding boundary condition

∂φn

∂ξ
= −k

2
σn + h(2) (σn−1, . . . , σ1, φn−1, . . . , φ0) on Ω̃(2), (4.37)

The functions g(1) and g(2) involve only polynomial combinations of known quantities, mak-
ing the differential equations easily solvable at each step. Automating the process with
Mathematica, we compute {σi}3

i=1. The exact results for the one-domain model are shown
below. Note that they agree precisely with the first term in each series (4.24)-(4.26).

σ1 = −
(

iPe

1 + k

)
, (4.38)

σ2 =
−1

1 + k

(
1 +

11k2 + 6k + 1

48 (1 + k)2
Pe2

)
, (4.39)

σ3 =
iPe

12(1 + k)3

(
k(1 + 4k) +

177k4 + 122k3 + 44k2 + 10k + 1

240 (1 + k)2
Pe2

)
(4.40)

We emphasize that these results are valid only when δ ≪ 1. For larger δ, the expansions
in (4.24)-(4.26) are required. Again, we observe that the signs of σ1 and σ2 are always
negative, and that the sign of σ3 is never negative, meaning that only fronting peaks, not
tailing peaks, are predicted by this model. Finally, we note that (4.38) and (4.39) agree
exactly with Golay’s results in [5]. Had Golay used his model to predict asymmetries, he
would have arrived at (4.40).

5 Return to Normality

Here, we examine sources for asymmetry in the concentration distribution, and provide an
estimate of the time required for a return to normality. For the case of Taylor dispersion
with non-reacting side walls, this problem was previously considered by Chatwin [3]. We
will see that for linear chromatography in a homogeneous column, asymmetries damp out
relatively quickly. For ease of notation, we first define σ1 = −iµ1, σ2 = −µ2, and σ3 = iµ3,
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where µ1, µ2, µ3 ∈ R
+. We are interested in approximating

Φ(r, ζ, τ) ≈ 1

2π

∫ ∞

−∞

a0(ε)φ
(1)(ξ, ε)eiεζe(−iµ1ε−µ2ε2+iµ3ε3)τdε.

In the model we consider, asymmetry can be caused by three sources. We will consider
each in isolation. In section 5.1 we consider the effects of σ3. We will see that this term is the
dominant source of asymmetries. This term contributes only to asymmetries when nonzero,
and then only produces fronting peaks. In section 5.2 we consider the effects of the initial
concentration distribution, represented by a0(ε), and in section 5.3 we consider the effects
of the eigenfunction φ(1)(ξ, ε). These last two sources of asymmetries can be neglected with
respect to the contributions from σ3, but we compute them for completeness.

5.1 Effects of the term σ3

Although σ3 may introduce an asymmetry, the concentration will eventually return to a
normal distribution, given sufficient time. Here, we provide an estimate of the time required
for a return to normality by approximating the inverse Fourier transform through neglecting
the terms σ4 and higher. Here, we assume the first-order approximations a0(ε) = 1 and
φ(1)(ξ, ε) = 1, so that we may consider the effects of σ3 in isolation. We consider the inverse
Fourier transform

1

2π

∫ ∞

−∞

eiεζe(−iµ1ε−µ2ε2+iµ3ε3)τdε,

where we have defined

ζ0 ≡ ζ − µ1τ√
τ

.

Let s2 = τε2. We may reexpress the integrand in terms of s as

e−µ2s2+iζ0seiµ3(s3/
√

τ).

We are interested in τ ≫ 1, and thus write a series expansion for the rightmost term, giving

eiµ3(s3/
√

τ) ≈ 1 + iµ3
s3

√
τ
.

Evaluating the resulting integral gives
(

1√
τ

)
1

2
√

πµ2
e−ζ2

0/(4µ2) +

(
µ3ζ0(ζ

2
0 − 6µ2)

8µ3
2τ

)
1

2
√

πµ2
e−ζ2

0/(4µ2).

The first term on the right-hand side is a gaussian with mean µ1τ and variance
√

2µ2τ ; the
term we would expect if µ3 were zero. The coefficient of the second term is the nonsymmetric
contribution. We see that it goes to zero 1/

√
τ faster than the symmetric leading term.

In particular, this means asymmetries due to σ3 will go to zero as time progresses, and
the rate in which they go to zero varies with µ3/µ3

2. This means that a larger diffusion rate
µ2 corresponds to a faster return to normality. Additionally, a smaller µ3 also corresponds
to a faster return to normality. How the problem parameters control the magnitude of
σ3 was discussed in sections 4.1 and 4.2, where it was shown that linear chromatography
predicts only fronting peaks, and never tailing peaks.
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5.2 Effects of the Initial Concentration: a0(ε)

The initial distribution of the concentration, represented through the function a0(ε), is
generally the source of an asymmetry, although this asymmetry will damp out over time.
We begin by approximating a0(ε) as a0(ε) ≈ β0 + iβ1ε.

Here, we assume the first-order approximation φ(1)(ε) = 1 and that σ3 and higher terms
are zero, so that we may consider the effects of a0(ε) in isolation. We consider the inverse
Fourier transform

1

2π

∫ ∞

−∞

eiεζ (β0 + iβ1ε) e(−iµ1ε−µ2ε2)τdε.

Evaluating the integral gives
(

β0√
τ

)
1

2
√

πµ2
e−ζ2

0/(4µ2) +

(
β1ζ0

2µ2τ

)
1

2
√

πµ2
e−ζ2

0/(4µ2). (5.1)

The first term is a gaussian with mean µ1τ and variance
√

2µ2τ ; the term we would expect
if β1 were zero. In particular, this would be the case if the initial concentration took the
form of the eigenmode φ(1). For |β1/β0| ≪ 1, β1 does not introduce an asymmetry and
instead corresponds to a shifted gaussian, which we now show.

Consider the gaussian function

g(x) =

(
β0√
τ

)
1

2
√

πµ2
e
−(x−

β1
β0

1
√

τ
)2/(4µ2)

,

and the first-order Taylor series expansion of g(x) about the point ζ0 − β1

β0

1√
τ
:

g(x) ≈
(

β0√
τ

)
1

2
√

πµ2
e−ζ2

0/(4µ2) −
(

β0ζ0

2µ2τ

)
1

2
√

πµ2
e−ζ2

0/(4µ2)

(
x − ζ0 −

β1

β0

1√
τ

)
.

Evaluating this expansion at the point x = ζ0 gives

g(ζ0) ≈
(

β0√
τ

)
1

2
√

πµ2
e−ζ2

0/(4µ2) +

(
β1ζ0

2µ2τ

)
1

2
√

πµ2
e−ζ2

0/(4µ2),

which is precisely (5.1). Thus, (5.1) is approximately equal to

g(ζ0) =

(
β0√
τ

)
1

2
√

πµ2
e
−(ζ0−

β1
β0

1
√

τ
)2/(4µ2)

,

which, being a shifted gaussian, is still a symmetric function. One can also view this result
as a change in the frame of reference. It is always possible to select a frame of reference
such that α1 is zero, and thus it cannot be the source of asymmetric peaks.

To analyze the rate at which an asymmetry in the initial concentration is diminished,
we must instead consider a higher-order wavenumber expansion of a0(ε). We let a0(ε) ≈
β0 + iβ1ε + β2ε

2. The contribution from the β2 term is

β2

2π

∫ ∞

−∞

ε2eiζ0
√

τε−µ2τε2
dε =

(
β2(2µ2 − ζ2

0 )

4µ2
2τ
√

τ

)
1

2
√

πµ2
e−ζ2

0/(4µ2).
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The leading coefficient varies with β2/(2µ2τ), and goes to zero 1/τ faster than the symmetric
leading term in (5.1). In particular, this means asymmetries due to the initial concentration
distribution go to zero as time progresses, and the rate in which they go to zero varies with
1/µ2, the term governing the diffusion rate. A greater rate of diffusion means that asym-
metries of the initial concentration will damp out at a correspondingly greater rate, as we
would expect. Further, recall that the nonsymmetric contribution of σ3 went to zero 1/

√
τ

faster than the leading symmetric term, meaning that the nonsymmetric contribution of the
initial concentration can be neglected when compared to the nonsymmetric contribution of
σ3, for long times.

5.3 Effects of the Eigenfuncton: φ
(1)
1

The eigenfunction φ
(1)
1 can also introduce an asymmetry, although this asymmetry will also

damp out over time. In this section, we will approximate the eigenfunction as φ(1)(ξ, ε) ≈
φ

(1)
0 (ξ) + φ

(1)
1 (ξ)ε + φ

(1)
2 (ξ)ε2 = 1 + ip

(1)
1 (ξ)ε + p

(1)
2 (ξ)ε, where p

(1)
1 (ξ) and p

(1)
2 (ξ) are real-

valued functions. From the series expansions in section 4, we know that φ
(1)
0 = 1, φ

(1)
1 is

purely imaginary, and φ
(1)
2 is purely real. From the previous section, we know that so long

as |p(1)
1 (ξ)| ≪ 1, the term p

(1)
1 (ξ) acts to produce a shifted gaussian and does not introduce

an asymmetry. We thus consider the contribution of the term p
(1)
2 (ξ).

We assume the first-order approximation a0(ε) = 1 and that σ3 and higher terms are
zero, so that we may consider the effects of φ(1) in isolation. In analogy with the previous
section, we consider the inverse Fourier transform

p
(1)
2 (ξ)

2π

∫ ∞

−∞

ε2eiζ0
√

τε−µ2τε2
dε =

(
p
(1)
2 (ξ)(2µ2 − ζ2

0 )

4µ2
2τ
√

τ

)
1

2
√

πµ2
e−ζ2

0/(4µ2).

The leading coefficient varies with p
(1)
2 (ξ)/(4µ2τ), and goes to zero 1/τ faster than the

symmetric leading term. Again recall that the nonsymmetric contribution of σ3 went to zero
1/
√

τ faster than the leading symmetric term, meaning that the nonsymmetric contribution
of the eigenfunction can be neglected when compared to the nonsymmetric contribution of
σ3, for long times.

6 Minimum Height Equivalent to a Theoretical Plate

In general, it is desirable to choose an average carrier gas velocity that minimizes the
theoretical plate height. We will consider the one-domain model, and utilize the equations
(4.38)-(4.40). The (dimensionless) rate of diffusion is −2σ2. The (dimensionless) time τ
required for an analyte to traverse a column of (dimensionless) length L/R while travelling
at a (dimensionless) speed iσ1 is τ = (L/R)/(iσ1). We thus seek to minimize the total
diffusion

−2σ2τ = −2L

iR

σ2

σ1
=

(
2

Pe
+

11k2 + 6k + 1

24(1 + k)2
Pe

)
L

R
.
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We note that the proceeding equation can be considered a rescaling of the height equivalent
to a theoretical plate (HETP) for the column. A plot of the HETP vs. Pe is commonly
called a Golay plot. Setting the derivative of this equation with respect to Pe equal to zero
and solving for the optimal Péclet number Peopt gives

Peopt = 4
√

3
1 + k√

1 + 6k + 11k2
.

Plugging this into the expression for the HETP gives the (dimensionless) minimum theo-
retical plate height. Multiplying the result by R gives

√
1 + 6k + 11k2

√
3(1 + k)

L,

the unscaled result, in agreement with [5].

7 Numerical Results

In this section we confirm our asymptotic analysis through numerical experiment. Equations
(3.13)-(3.17) describe a two-point boundary value problem, and can be solved with the
shooting method [4]. This allows numerical determination of σ(ε) and φ(ξ, ε) for small ε.
This data can be fit with a relatively low-order polynomial, and that polynomial can be
used compute the inverse Fourier transform and determine the concentration for all times τ .
In this section, assume the initial concentration is strongly oriented with φ(1) and compute
the inverse Fourier transform

1

2π

∫ ∞

−∞

φ̂(1)(ε)eiεζeσ(ε)τdε, (7.1)

where

φ̂(1)(ε) ≡ 2

∫ 1

0
ξφ(1)(ξ, ε)dξ (7.2)

is the average of φ(1) over a cross-section.

We use this process to solve the two-domain eigenproblem numerically for a given set
of problem parameters. We then compare these results with the asymptotic expansions
computed in section 4, and with the predictions of Golay.

Consider the two-phase model with the following problem parameters: [12]

R = 0.125 mm L = 30 m U0 = 0.17 m / s

D(1) = 0.4 cm2/s κ(1) = 6.56 × 10−5 g
cm·s K = 0.0854

D(2) = 6 × 10−6 cm2/s κ(2) = 5.76 × 10−6 g
cm·s δ = 0.002

where L is the length of the column. From (3.9), we have k = 2. Note that D(1)τ/R2 ≫ 1
for any reasonable τ > 0, so we are justified in considering only the m = 0 eigenmode. For
the rescaled models, we have the dimensionless parameters
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Figure 3. Scaled averaged value of analyte concentration plotted
along long axis of column at time τ = 6.78 × 105, approximately
halfway along the length of the column. In this example, the curve
is symmetric.

D(1)

D(2) = 6.6667 × 104 Pe = 0.5313 δ = 0.002

κ(1)

κ(2) = 11.388 K = 0.0854

A numerical solution of the two-domain eigenvalue problem (3.13)-(3.17) by the means dis-
cussed in this section produces, after application of the inverse Fourier transform (7.1), the
image shown in Figure 3. This curve is symmetric about the peak. Predictions of the one-
domain and two-domain models are tabulated in Table 1, as well as Golay’s predictions, and
the results from numerical solution of (3.13)-(3.17). Note that all models agree reasonably
well.

8 Conclusions

We developed from first principles a general model for linear chromatography in a tubular
column. We used this model to develop closed-form expressions for the terms σ1, σ2, and σ3

which control the concentration velocity, diffusion, and asymmetry, respectively. We showed
analytically that the phenomenon known as “tailing” can never occur under a homogeneous
linear chromatography model. For situations where asymmetries arise (“fronting” peaks)
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Table 1. Predictions of the one-domain and two-domain models,
along with results from a numerical polynomial curve fit. There
is excellent agreement between the asymptotic prediction and nu-
merical result.

Polynomial Fit Two-Domain Model One-Domain Model Golay Predicted

σ0 4.00020×10−11 0.00000×100 0.00000×100 0.00000×100

σ1 -1.76979×10−1 i -1.76979×10−1 i -1.77097×10−1 i -1.77097×10−1 i

σ2 -3.47405×10−1 -3.47405×10−1 -3.45771×10−1 -3.45771×10−1

σ3 3.75483×10−2 i 3.75483×10−2 i 3.03723×10−2 i N/A

we analyze the rate at which the concentration distribution returns to a normal distribution.
We then confirmed our analysis through numerical experiment.
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APPENDIX

Derivation of Partition Coefficient K

At equilibrium, the solute chemical potential µ(1) in the mobile phase is equal to the chemical
potential µ(2) in the stationary phase:

µ(1) = µ(2),

where

µ(i) = µ
(i)
0 + RuT ln a(i), i = 1, 2,

where Ru is the universal gas constant, and T is the absolute temperature. The solute

activity in the ith phase is denoted by a(i), and µ
(i)
0 is the solute chemical potential at some

unit activity. Replacing the activity a(i) by the concentration C(i), we have

µ
(1)
0 + RuT lnC(1) = µ

(2)
0 + RuT lnC(2).

The ratio of the two concentrations is then given as [8]

K ≡ C(2)

C(1)
= exp

(
µ

(1)
0 − µ

(2)
0

RuT

)
.

It is assumed that µ
(1)
0 − µ

(2)
0 is a constant, so that α is invariant in the system. Note this

this requires the temperature T to be held constant.
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